Площадь квад. Как найти площадь квадрата? Что такое периметр прямоугольника? Формула расчета периметра

Нужно в вышеуказанную формулу подставить его стороны. Но они равны, получается, чтобы найти площадь правильного прямоугольника нужно возвести в квадрат его сторону. S = (a) во второй степени.

Теперь по формуле площади квадрата можно найти его сторону, зная численное значение площади. Для этого нужно решить уравнение второй степени: S=(a) во второй степени. Находится сторона «а» путем извлечения из под корня площади фигуры: а = корень квадратный из (S). Пример: нужно найти сторону квадрата, если его площадь составляет шестьдесят четыре квадратных сантиметров. Решение: если 64=(а) в кавдрате, то "а" равно корень из шестидесяти четырех. Получается восемь. Ответ: восемь квадратных сантиметров.

Если решение квадратного корня выходит за рамки таблицы квадратов и ответ не получается целым, спасет микрокалькулятор. Даже на самой простой машинке можно найти значение из под корня второй степени. Для этого наберите следующий набор кнопок: "число", которое выражает подкоренное выражение и "знак корня". Ответ на экране и будет подкоренным значением.

Куб представляет собой частный случай параллелепипеда, в котором каждая из граней образована правильным многоугольником - квадратом. Всего куб обладает шестью гранями. Вычислить площадь не представляет затруднений.

Инструкция

Теперь, зная площадь одной из грани квадрата, можно узнать площадь всей поверхности куба. Это можно осуществить, если модифицировать формулу, указанную выше:
S = 6*a²
Иначе говоря, зная, что таких квадратов (граней) у куба аж шесть штук, то площадь поверхности куба составляет одной из граней куба.

Для наглядности и удобства можно привести пример:
Допустим, дан куб, у которого длина ребра равна 6 см, требуется найти площадь поверхности данного куба. Первоначально потребуется найти площадь грани:
S = 6*6 = 36 см²
Таким образом, узнав площадь грани, можно найти и всю площади поверхности куба:
S = 36*6 = 216 см²
Ответ: площадь поверхности куба с ребром, равным 6 см, составляет 216 см²

Обратите внимание

Куб является частным случаем не только параллелепипеда, но и призмы.
Параллелепипедом называется призма, у которого основанием является параллелограмм. Особенностью параллелепипеда является то, что 4 из 6 его граней - прямоугольники.

Призмой считается многогранник, в основании которого находятся равные многоугольники. Одной из главных особенностей призмы можно назвать то, что боковые грани ее является параллелограммами.

Помимо куба, существуют и иные виды многогранников: пирамиды, призмы, параллелепипеды и т.д., каждому из них соответствуют различные способы нахождения площадей их поверхностей.

Полезный совет

Если дан не куб, а иной правильный многогранник, то в любом случае, площадь его поверхности будет находиться аналогично. Это означает, что площадь поверхности правильного многогранника находится путем суммирования всех площадей его граней - правильных многоугольников.

Кубом называют объемную геометрическую фигуру с восемью ребрами, двенадцатью вершинами и шестью гранями. От параллелепипеда, имеющего такие же параметры, ее отличают обязательное равенство длин всех ребер и прямые углы в вершинах каждой грани. Простота этой фигуры делает несложным вычисление общей площади поверхности всех ее граней.

Инструкция

Если известна длина куба (a), то вы можете использовать наиболее распространенный из всех возможных вариантов формулы вычисления площади (S). По определению каждая грань этой фигуры имеет квадрата, а его площадь равна длине грани, возведенной во вторую степень. Так как всего таких граней у куба шесть, то это число надо увеличить именно во столько раз: S = 6*a².

Если длина ребра неизвестна, но дан объем (V) пространства, ограничиваемого сторонами куба, то площадь (S) тоже можно . Так как известная из условий величина для этой фигуры находится возведением длины ребра в третью степень, то длину стороны каждой грани можно определить, если извлечь кубический корень из этого параметра. Подставьте это выражение в равенство из предыдущего шага и вы получите такую формулу: S = 6*(³√V)².

Если известна длина диагонали куба (L), то через нее тоже можно выразить длину одной грани, а значит и рассчитать площадь поверхности гексаэдра. Диагональ находится умножением длины грани на квадратный корень из тройки - выразите из этой формулы размер одной стороны квадрата и подставьте полученное значение во все то же равенство из первого шага: S = 6*(L/√3)² = 2*L².

Если известен радиус описанной около куба сферы (R), то формулу вычисления площади поверхности можно вывести из полученного на предыдущем шагу выражения. Так как любая из диагоналей куба совпадает с диаметром такой сферы, а диаметр - это удвоенный радиус, то вам надо трансформировать формулу к такому виду: S = 2*(2*R)² = 8*R².

Еще проще получить формулу вычисления площади поверхности (S) гексаэдра, если известен радиус (r) не описанной, а вписанной в эту фигуру сферы. Ее диаметр (удвоенный радиус) равен длине ребра куба. Подставьте это значение в формулу из первого шага и получите такое равенство: S = 6*(2*r)² = 24*r².

Грань куба представляет собой квадрат, диагональ которого делит его на два равных прямоугольных треугольника, являясь их гипотенузой. Именно поэтому все используемые здесь формулы в той или иной степени основаны на применении теоремы Пифагора. В зависимости от имеющихся данных вы сможете найти площадь грани (квадрата) куба несколькими различными способами.

Квадрат – это правильный четырехугольник, в котором все углы и стороны равны между собой.

Довольно часто эту фигуру рассматривают, как частный случай или . Диагонали квадрата равны между собой и используются в формуле площади квадрата через диагональ.
Для расчета площади рассмотрим формулу площади квадрата через диагонали:

То есть площадь квадрата равна квадрату длины диагонали поделенному на два. Учитывая, что стороны фигуры равны, можно рассчитать длину диагонали из формулы площади прямоугольного треугольника или по теореме Пифагора.

Рассмотрим пример расчета площади квадрата через диагональ. Пусть дан квадрат с диагональю d = 3 см. Необходимо вычислить его площадь:

По этому примеру расчета площади квадрата через диагонали мы получили результат 4,5 .

Площадь квадрата через сторону

Найти площадь правильного четырехугольника можно и по его стороне. Формула площади квадрата очень проста:

Так как в предыдущем примере расчета площади квадрата мы рассчитали значение по диаметру, теперь попробуем найти длину стороны:
Подставим значение в выражение:
Длина стороны квадрата будет равна 2,1 cm.

Очень просто можно использовать формулу площади квадрата вписанного в окружность.

Диаметр описанной окружности будет равен диаметру квадрата. Так как квадрат считается правильным ромбом, можно использовать формулу расчета площади ромба. Она равна половине произведения его диагоналей. Диагонали квадрата равны, значит формула будет выглядеть так:
Рассмотрим пример расчета площади квадрата вписанного в окружность.

Дан квадрат, вписанный в окружность. Диагональ окружности равна d = 6 см. Найдите площадь квадрата.
Мы помним, что диагональ окружности равна диагонали квадрата. Подставляем значение в формулу расчета площади квадрата через его диагонали:

Площадь квадрата равна 18

Площадь квадрата через периметр

В некоторых задачах по условиям дается периметр квадрата и требуется расчет его площади. Формула площади квадрата через периметр выводится из значения периметра. Периметр – это сумма длин всех сторон фигуры. Т.к. в квадрате 4 равных стороны, то он будет равенОтсюда находим сторону фигуры Площадь квадрата по обычной формуле считается так: .
Рассмотрим пример расчета площади квадрата через периметр.

Площадь многоугольника

Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.

Свойство 1: Для равных многоугольников значения их площадей равны.

Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При этом площадь исходного многоугольника равняется сумме площадей всех многоугольников, на которые разбит данный многоугольник.

Площадь квадрата

Теорема 1

Площадь квадрата определяется как квадрат длины его стороны.

где $a$ -- длина стороны квадрата.

Доказательство.

Для доказательства нам необходимо рассмотреть три случая.

Теорема доказана.

Площадь прямоугольника

Теорема 2

Площадь прямоугольника определяется произведением длин его смежных сторон.

Математически это можно записать следующим образом

Доказательство.

Пусть нам дан прямоугольник $ABCD$, у которого $AB=b,\ AD=a$. Достроим его до квадрата $APRV$, длина стороны которого равняется $a+b$ (рис. 3).

Рисунок 3.

По второму свойству площадей имеем

\ \ \

По теореме 1

\ \

Теорема доказана.

Пример задач

Пример 1

Найти площадь прямоугольника со сторонами $5$ и $3$.

Кто-то из нас математику в школе просто прогуливал, кто-то проболел, а кто-то подзабыл за давностью школьных лет, но так или иначе, рано или поздно возникает вопрос: "Как найти площадь квадрата?"

Самая основная формула того, как найти площадь квадрата:

S=a 2 , где:

  • S - площадь квадрата,
  • а - сторона квадрата.

Так как у квадрата все стороны равны, то площадь квадрата - это сторона в квадрате. Например, нам известно, что длина стороны квадрата - 4 см. Тогда по формуле S=a 2 получится: S=4 2 =16 (см 2).

Ещё один способ нахождения площади квадрата - по периметру. Периметр квадрата (Р) равен сумме всех сторон квадрата, а так как у квадрата все стороны равны, то имеет следующую формулу:

Р=4а , где:

  • Р - периметр квадрата,
  • а - сторона квадрата.

Таким образом, если нам известен периметр квадрата, мы можем вычислить его площадь по следующей формуле:

Разделив периметр на 4, мы получим длину одной стороны квадрата, после чего по первой формуле легко вычислить площадь.

Также можно найти площадь квадрата, если известна длина его диагонали. Особенности квадрата, как геометрической фигуры таковы, что его диагонали (отрезок, проведённые между несмежными вершинами квадрата) делят квадрат на два прямоугольных и равнобедренных треугольника. Прямоугольный треугольник - это такой треугольник, в составе которого есть прямой угол, а нам известно, что у квадрата все углы прямые. Равнобедренный треугольник - это такой треугольник, у которого две стороны равны. Диагонали квадрата являются одновременно и биссектрисами его углов. Биссектриса - это луч, которая делит угол пополам.

По теореме Пифагора известно, что квадрат гипотенузы равен сумме квадратов катетов:

с 2 = b 2 + a 2

Но так как у нас катеты равны, то формула будет иметь следующий вид:

с 2 = а 2 + а 2 = 2а 2

В нашем случае гипотенуза - это диагональ квадрата (с = d), а катеты - сторона (b,е = a). Имеем:

Из вышеприведённой формулы можно вывести формулу нахождения катета (стороны квадрата):

Подставляем данное значение в первую формулу:

Сокращаем значения корня и второй степени и получаем формулу:

Например, если диагональ равна 8 см., то площадь квадрата равна:

S=8 2 /2 = 32 (см.).

Ещё одна формула нахождения площади квадрата - по радиусу вписанной (r) и описанной (R) окружности.

Вписанная окружность - это окружность, которая касается середины каждой стороны квадрата и имеет радиус, равный половине середины стороны:

Описанная окружность – это такая окружность, которая касается вершины каждого угла квадрата:

Таким образом, для нахождения площади квадрата при помощи радиуса вписанной окружности получаем следующую формулу:

S=(2r) 2 =2 2 *r 2 =4r 2

Например, если радиус вписанной окружности 3 см., то

S=4*3 2 =4*9=36 (см.).

Для нахождения площади квадрата при помощи радиуса описанной окружности получаем такую формулу:

S=d 2 /2=2R 2 /2=(2 2 *R 2)/2=2R 2

Таким образом, если радиус описанной окружности равен 4, то по формуле:

S=2*4 2 =2*16=32 (см).

Вот все способы того, как найти площадь квадрата, формулы вы также имели возможность вывести сами. Успешных Вам решений!

Площадь многоугольника

Понятие площади многоугольника будем связывать с такой геометрической фигурой, как квадрат. За единицу площади многоугольника будем принимать площадь квадрата со стороной, равной единице. Введем два основных свойства, для понятия площади многоугольника.

Свойство 1: Для равных многоугольников значения их площадей равны.

Свойство 2: Любой многоугольник можно разбить на несколько многоугольников. При этом площадь исходного многоугольника равняется сумме площадей всех многоугольников, на которые разбит данный многоугольник.

Площадь квадрата

Теорема 1

Площадь квадрата определяется как квадрат длины его стороны.

где $a$ -- длина стороны квадрата.

Доказательство.

Для доказательства нам необходимо рассмотреть три случая.

Теорема доказана.

Площадь прямоугольника

Теорема 2

Площадь прямоугольника определяется произведением длин его смежных сторон.

Математически это можно записать следующим образом

Доказательство.

Пусть нам дан прямоугольник $ABCD$, у которого $AB=b,\ AD=a$. Достроим его до квадрата $APRV$, длина стороны которого равняется $a+b$ (рис. 3).

Рисунок 3.

По второму свойству площадей имеем

\ \ \

По теореме 1

\ \

Теорема доказана.

Пример задач

Пример 1

Найти площадь прямоугольника со сторонами $5$ и $3$.